BMO and Hankel Operators on Bergman Space of the Siegel Upper Half-Space
نویسندگان
چکیده
On the setting of Siegel upper half-space we study spaces bounded and vanishing mean oscillations which are defined in terms Berezin transform, use them to characterize compact Hankel operators on Bergman space. When symbols specialized be holomorphic, its corresponding Bloch space half-space.
منابع مشابه
Hankel Operators on the Bergman Space of Bounded Symmetric Domains
Let ii be a bounded symmetric domain in C with normalized 2 volume measure dV . Let P be the orthogonal projection from L (il, dV) 2 2 onto the Bergman space La(Q) of holomorphic functions in L (ii, dV). Let P be the orthogonal projection from L (ii, dV) onto the closed subspace of antiholomorphic functions in L (ii, dV). The "little" Hankel operator h, with symbol / is the operator from La(Ci)...
متن کاملFinite Rank Intermediate Hankel Operators on the Bergman Space
In this paper we characterize the kernel of an intermediate Hankel operator on the Bergman space in terms of the inner divisors and obtain a characterization for finite rank intermediate Hankel operators.
متن کاملToeplitz and Hankel Operators on a Vector-valued Bergman Space
In this paper, we derive certain algebraic properties of Toeplitz and Hankel operators defined on the vector-valued Bergman spaces L2,C n a (D), where D is the open unit disk in C and n ≥ 1. We show that the set of all Toeplitz operators TΦ,Φ ∈ LMn(D) is strongly dense in the set of all bounded linear operators L(L2,Cn a (D)) and characterize all finite rank little Hankel operators.
متن کاملWeighted Bmo and Hankel Operators between Bergman Spaces
We introduce a family of weighted BMO spaces in the Bergman metric on the unit ball of C and use them to characterize complex functions f such that the big Hankel operators Hf and Hf̄ are both bounded or compact from a weighted Bergman space into a weighted Lesbegue space with possibly different exponents and different weights. As a consequence, when the symbol function f is holomorphic, we char...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Complex Analysis and Operator Theory
سال: 2022
ISSN: ['1661-8254', '1661-8262']
DOI: https://doi.org/10.1007/s11785-022-01198-8